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Abstract: In recent years, the Cloud Radio Access Network (CRAN) has become a promising solution
for increasing network capacity in terms of high data rates and low latencies for fifth-generation
(5G) cellular networks. In CRAN, the traditional base stations (BSs) are decoupled into remote
radio heads (RRHs) and base band units (BBUs) that are respectively responsible for radio and
baseband functionalities. The RRHs are geographically proximated whereas the the BBUs are
pooled in a centralized cloud named BBU pool. This virtualized architecture facilitates the system
to offer high computation and communication loads from the impetuous rise of mobile devices
and applications. Heterogeneous service requests from the devices to different RRHs are now
sent to the BBUs to process centrally. Meeting the baseband processing of heterogeneous requests
while keeping their Quality-of-Service (QoS) requirements with the limited computational resources
as well as enhancing service provider profit is a challenging multi-constraint problem. In this
work, a multi-objective non-linear programming solution to the Quality-of-Experience (QoE) and
Profit-aware Resource Allocation problem is developed which makes a trade-off in between the
two. Two computationally viable scheduling algorithms, named First Fit Satisfaction and First Fit
Profit algorithms, are developed to focus on maximization of user QoE and profit, respectively, while
keeping the minimum requirement level for the other one. The simulation environment is built
on a relevant simulation toolkit. The experimental results demonstrate that the proposed system
outperforms state-of-the-art works well across the requests QoS, average waiting time, user QoE, and
service provider profit.

Keywords: 5G; cloud radio access network; computing resource allocation; quality-of-experience;
profit maximization

1. Introduction

The concept of next-generation cellular networks such as fifth-generation (5G) is becoming
popular, since they can help to accommodate the indomitable increase of data traffic currently being
experienced by the mobile network operators (MNOs) [1–3]. The leading MNOs are highly motivated
to incorporate the virtualization concept of cloud computing in their networks, giving birth to the
Cloud Radio Access Network (CRAN) [4]. In CRAN, the traditional base station (BS) is split into the
radio frequency (RF) unit, referred to as the remote radio head (RRH) and the baseband processing unit
(BBU) that provides the computational resources [4,5]. Although the RRHs are distributed over a wide
geographic region located at each cell site, the BBUs are now pooled and moved into a centralized cloud
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named the BBU pool, where the RRHs and BBUs are connected via fronthaul link. The virtualization
of Radio Access Networks (RANs) is acknowledged as one of the important use cases of network
function virtualization (NFV). It is considered to be the best candidate solution for supporting the next
generation mobile communication network (5G) [1,6], which embodies real-time cloud-computing,
collaborative radio and centralized baseband processing features in cellular networks.

By virtualization, the computing resources in the BBU pool can be dynamically shared among
all the cells in the network. However, due to the heterogeneity of the incoming service requests
from the RRHs to BBU pool, mapping an appropriate computational resource in the BBU pool to
a particular request is still an important research challenge for the next-generation CRAN systems.
Since in the CRAN architecture, mobile operators are dependent on cloud service providers for
computational resources, service providers’ profit must also be taken into account. The maximization
of user Quality-of-Experience (QoE) in the competitive market must also be addressed. In this paper,
we have developed a resource allocation scheme for mapping heterogeneous requests from RRHs to
BBUs so that user QoE and service providers’ profit is maximized under optimal resource utilization.
Figure 1 shows the CRAN service architecture and its components.

Figure 1. Fifth-generation (5G) Cloud Radio Access Network (CRAN) service architecture. BBU:
baseband processing unit; RRH: remote radio head.

Resource allocation and the RRH-BBU mapping problem in 5G CRAN has been addressed in a
number of research works in the literature [6–9]. However, focusing on the Quality-of-Service (QoS),
Khan et al. [6] developed a dynamic RRH-BBU mapping algorithm in CRAN architecture where the
service provider’s profit is not a focus of attention. By employing the news-vendor game model,
a resource allocation problem with a bargaining solution is investigated in [9] with the ability to
reconfigure its resources with varying traffic conditions. This scheme requires additional time for
resource reconfiguration, which can cause violation of QoS requirements. A renewable energy-based
user association and power allocation is proposed in [10]. They have addressed the QoS requirement
in terms of achievable rate, and completely disregard user QoE and service provider profit. Meeting
up the QoS requirements of heterogeneous requests with the limited computational resources as well
as enhancing service provider profit should be the prerequisite of a working CRAN environment.

Motivated by the aforementioned discussions, we have developed a QoE and Profit-Aware optimal
Resource Allocation scheme in a 5G Cloud Radio Access Network. The novelty of this work lies in
formulating a multi-constraint resource allocation problem so as to meet the heterogeneous user QoS
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requirements as well as to provide high profit to the operator. At first, weighted priority is calculated
for each arrived task from RRHs to BBU pool so that the service requests can be scheduled according
to their priorities and requirements. Here, the mapping problem of incoming service requests to the
BBUs is formulated as a multi-objective non-linear programming (MONLP) optimization problem.
Focusing on the QoE maximization of mobile operators as well as the subscribers and the service
provider’s profit, requests are selected in a scheduling slot and BBUs are allocated for the selected
incoming requests. The main contributions of this paper can be summarized as:

• An integrated priority metric is developed so that the priority of an incoming request to a suitable
BBU can be identified.

• Computational resource allocation problem for incoming requests is formulated as multi-objective
non-linear programming optimization problem focusing on maximization of end-user QoE as
well as service provider profit.

• Tradeoff between profit and customer satisfaction while selecting the BBUs for service
provisioning in CRAN is made by two scheduling algorithms which are computationally viable
to be deployed.

• To enhance system performance and resource utilization, the duration of the scheduling interval
is determined dynamically according to the incoming requests and available resources.

• The results of our extensive simulation experiments, carried out on CloudSimSDN [11], depict that
significant performance improvements in terms of user QoE, QoS satisfaction, average waiting
time, and service provider profit have been achieved by the proposed system compared to the
state-of-the-art works.

The rest of the paper is organized as follows. Section 2 describes some related works in our topic
of interest. In Section 3, the system model and assumptions for execution environment of different
requests are presented. The functional components of the proposed system architecture are described
in detail in Section 4. In Section 5, the performance of our proposed scheduling system is analyzed,
and Section 6 concludes the paper.

2. Related Works

CRAN technology is one suitable candidate for 5G systems; the advantages and challenges for
various candidate architectures and their performance capacities are reviewed in [1]. Provisioning and
allocation methods of virtual base stations (VBSs) in the base band unit (BBU) are proposed in [5].
The advantages, challenges, and future directions of CRAN technology are also studied in this survey
paper. However, in [12], using integer linear programming (ILP) cells are optimally assigned to
different BBU pools. It focuses on minimizing the capital expenditure (CAPEX) of CRAN deployment,
although the operational expenditure (OPEX) is not taken into account. In [13], the Virtual Radio
Access Networks (VRAN) Placement and Assignment Problem (VRAN-PAP) is formulated as a binary
integer linear program (BILP) where the center of attention is only to minimize the server and front
haul link setup cost rather than considering other cost issues.

Cooperative interference mitigation and handover management issues are addressed in [14],
which did not analyze user QoS requirement and resource allocation schemes. The authors of [8]
address the RRH to BBU assignment problem as a bin-packing problem which requires a significant
amount of computational complexity, where the end-user QoE is not traced. In [6], even though QoS
of requests are considered, service provider profit is not studied. In [15], the authors introduce
a clustering mechanism to maximize user satisfaction and enhance network energy efficiency.
Another noteworthy study [10] proposes a user association, and power allocation in mmWave-based
ultra-dense bands is considered with load balancing and energy efficiency. Nevertheless, in both of the
mentioned contributions, service provider profit in terms of executing a request on the cloud server is
not discussed.
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To exploit next-generation CRAN operations, a main challenging issue is how to properly control
system resources. To address this, one article [9] employs the news-vendor game model for resource
allocation. Here, the two-stage game-based resource management approach can practically adapt
current system conditions. However, an optimal tradeoff between service provider profit and customer
satisfaction are not concentrated here as well as in the state-of-the-art works.

In our proposed work, a QoE and Profit-Aware optimal Resource Allocation scheme in a Cloud
Radio Access Network has been developed. Here, focusing on maximization of user QoE and service
provider profit, the computational resource allocation problem for the incoming requests is formulated
as a multi-objective non-linear programming optimization problem. While allocating resources, the
amount of data to be processed, the maximum allowable service delay per request, and received signal
strength of the connected device of the user are also taken into account for identifying the priority. In
this work, a tradeoff is made between profit and customer satisfaction for service provisioning in 5G
CRAN architecture. For efficient resource utilization and enhancement of system performance, the
scheduling interval of the system is dynamically determined according to the request arrival rate and
service rate. To the best of our knowledge, this work is the first to address the problem of maximizing
user QoE as well as service provider profit under optimal resource utilization.

A comparative study among the state-of-the-art works focusing on different aspects of CRAN and
our proposed Quality-of-Experience and Profit-aware Resource Allocation scheme or QEPRA system
is given in Table 1. In the literature, several mechanisms [12,13,16] basically focus on infrastructure
development of CRAN architecture. Another noteworthy paper [6] addresses QoS-aware scheduling
and based on the service provider profit [9] allocates resources for incoming requests. However, our
proposed system makes a tradeoff between user QoE as well as service provider profit while utilizing
resources efficiently.

Table 1. Comparative study among the state-of-the-art works on CRAN. NvG: news vendor
game-based resource allocation; QEPRA: Quality-of-Experience and Profit-aware Resource Allocation;
QoE: Quality-of-Experience; QoS: Quality-of-Service; QoSM: QoS-aware dynamic BBU-RRH
mapping; VBS: virtual base station; VRAN-PAP: Virtual Radio Access Networks Placement and
Assignment Problem.

State-of-the-Art Works QoS User QoE Profit Resource Utilization

VBS Provisioning [12] (Partially)
VRAN-PAP [13] (Partially)

Fluidnet [16]
RRH Clustering [15] X

QoSM [6] X
NvG [9] X X

QEPRA [Proposed] X X X X

3. System Model and Assumptions

In this section, the overall system architecture and the assumptions as well as the system
components which make the allocation of computational resources for the incoming requests more
efficient are well explored.

The 5G Cloud Radio Access Network (CRAN) refers to the virtualization of base station
(BS) functionalities by means of cloud computing [17]. In this work, a fully centralized CRAN
architecture [4] is assumed where all the baseband functions are assembled in BBUs (base band units)
and the signals are centrally processed. The request management and resource allocations of BBUs of
macro-cell and small-cell are co-located in the BBU pool. Remote radio heads (RRHs) integrate the
radio functionalities where the RRHs and BBU pool communicate over CPRI (Common Public Radio
Interface) protocol. We are considering that the overall system supports 2G, 3G, and 4G networks, and
is designed for future 5G network.
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In CRAN architecture, the mobile subscribers are directly connected to the RRHs of the mobile
operators with heterogeneous service requests and Service Level Agreements (SLA), via supported
mobile network communication protocols (e.g., GSM-Global System for Mobile communication,
3GPP-3rd Generation Partnership Project, LTE-Long Term Evolution, LTE Advanced, etc.). With the
help of BBUs, residing in a BBU pool, the incoming workloads of the RRHs are processed. As a
consequence, these computational resource requests are sent from RRHs to a Request Receiver (RR)
located in the cloud service provider (CSP)’s side, as shown in Figure 2. The RR receives all the
incoming requests with the corresponding service requirements. It then extracts the major attributes
(data size, tolerable service delay, signal strength) of the requests from the requirements and sends
those to the Request Prioritizer (RP). The RP calculates the weight for each arrived request according to
the requirements which denote the priority of each incoming request in a certain scheduling interval.
The RP then sends the requests with their weights to the BBU Pool Manager which is responsible for
managing the resource allocation process.
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Figure 2. Proposed system model.

The optimal mapping of incoming requests to BBUs in a pool is done by the QoE and Profit-aware
Resource Allocator. With the help of Pricing Policy Maker and Resource Manager, the QoE and Profit-aware
Resource Allocator allocates BBUs for selected requests from the incoming requests in a scheduling
interval in order to maximize the total user QoE and service provider profit. As limited computational
resources are available for heterogeneous incoming requests with various requirements, these resources
are allocated with the help of several scheduling intervals. The scheduling interval can be defined as
in [18]. Here, the Resource Monitor monitors the incoming load and the Resource Manager creates
appropriate virtual base stations (VBSs) according to the requirements. In addition, the Pricing Policy
Maker provides the per-unit prices according to the work load and priority of incoming service requests.
These unit prices are dynamically adjustable, as explained in [19,20]. After that, the Request Executor
executes a particular request on the allocated computational resource, provided by the BBU Pool
Manager. The execution result of each request is then sent via the Response Sender to the RRH. The
relevant notations and definitions used for modeling the system are listed in Table 2.
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Table 2. Notations.

Symbol Definition

R Set of all incoming computational resource requests
H Set of all remote radio heads (RRHs)
B Set of all base band units (BBUs) in a BBU Pool
Λr Set of attributes of a request, r ∈ R
dr Incoming data of a request, r ∈ R to be processed
qr The QoS requirement of an incoming request, r ∈ R
nr The received signal strength of the connected device associated with a request
wr The priority of an incoming request
Or Set of objective parameters considered for executing a request, r ∈ R
ρr,b Cloud service providers’ profit for executing a request, r ∈ R on a BBU, b ∈ B
τr,b Total time requires a RRH, h ∈ H to get first response from a BBU, b ∈ B after executing a request, r ∈ R
Γr,b The number of scheduling intervals required for a request, r ∈ R to be assigned to BBU
∆s(i) Scheduling interval of the system for allocating resources
hb BBU rental cost for executing a request
ub Monetary cost for other resource usage

4. Proposed Resource Allocation Scheme

In this section the working principle and functional methodologies of our proposed system are
presented in detail. As the mechanisms used in the Request Prioritizer (RP) and the QoE and Profit-aware
Request Scheduler greatly control the system performance, we address these two components in the
whole system to enhance the efficiency. Here, the Request Prioritizer (RP) helps to identify the priority of
the incoming service requests so that resources can be allocated for a request with higher priority first.
The multi-constraint problem of resource allocation for the incoming service requests is formulated as
a multi-objective non-linear programming (MONLP) optimization problem in the QoE and Profit-aware
Resource Allocator. As this is an NP-Hard problem, two heuristic solutions are provided here considering
a single objective at a time. Two algorithms called First Fit Satisfaction (FFS) algorithm focusing on
the maximization of user QoE while maintaining the unit profit threshold and the First Fit Profit
(FFP) algorithm targeting the maximization of service providers’ profit while satisfying the QoS
requirements are introduced here. As limited computational resources are available for heterogeneous
incoming requests with various requirements, these resources are allocated with the help of several
scheduling intervals in the whole system. To enhance the system performance, dynamic determination
of scheduling intervals for resource allocation is also addressed here.

4.1. Incoming Request Prioritization

The proposed Request Prioritizer (RP) prioritizes the incoming requests on a certain scheduling
interval based on the attribute values, extracted by the Request Receiver (RR). We assume that the
Attribute Value Extractor residing in the Request Receiver (RR) is capable of extracting the requirements
from the incoming baseband processing requests, as exhibited in Figure 3. The considered attributes of
a request, r ∈ R, which defines the QoE are:

• Amount of data to be processed, dr

• The tolerable service delay, qr

• Received signal strength of the connected device, nr.
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Figure 3. Request prioritization model.

The values acquired by the Attribute Value Extractor in the Request Receiver (RR) of each incoming
request, r ∈ R, are sent to the Attribute Repository, which keeps the attribute values in reserve.
As the values of the considered attributes differ in terms of norms and units, the Normalization
function normalizes the values within a range in association with the Attribute Repository, so that the
heterogeneity of the attributes can be alleviated. The normalized values of each attribute of a request
are then fed into the Priority Generator, which enumerates the priority of the incoming requests in a
specific scheduling interval. The resource requests are then sent along with the priority values to the
BBU Pool Manager.

Let Λr denote the set of considered attributes of a request r ∈ R, where Λr = {dr, qr, nr}.
Each attribute Λi

r ∈ Λr of a request r ∈ R from the corresponding RRH, h ∈ H can be scaled between 0
and 1 using the Min-Max normalization technique as in Equation (1):

Λ̂i
r =

cur(Λi
r)−min(Λi)

max(Λi)−min(Λi)
, (1)

where cur(Λi
r) represents the current value of the corresponding attribute, Λi

r ∈ Λr of one incoming
request r ∈ R. In addition, max(Λi

r) and min(Λi
r) denote the maximum and minimum values of an

attribute Λi
r ∈ Λr, which can be determined by the historical data analysis of the previous requests

arrived on the previous scheduling periods stored in the Attribute Repository. The considered number
of previous scheduling periods can be determined by the system based on the data. Using Equation (1)
we get the normalized values of dr, qr, and nr which are denoted as d̂r, q̂r, and n̂r, respectively. Now,
the weight of each incoming request representing the priority can be calculated as:

wr =
d̂r

n̂r + q̂r
. (2)

The higher value of wr denotes the higher priority of an incoming request within a specific
scheduling interval. Here, we have generated the priority of each incoming service request based
on the required data processing load, the connectivity of the device to the network, and the QoS
requirement of the service request. This priority generation technique facilitates the faster execution of
the requests with higher data rate requirement from a critical device in terms of signal strength and
sending back the result within its QoS requirement. For example, if two requests arrive, one with poor
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connectivity and another with strong RSSI (Received signal strength indication) value, although they
have same data rate requirement, our proposed system will give faster access of the BBU to the request
with poor RSSI value. The same thing will happen to the request with the QoS requirement of less
allowable delay to get response.

4.2. Optimal Problem Formulation

The computational resource allocation problem for the incoming requests from RRHs to BBUs is
formulated as a multi-objective non-linear programming (MONLP) optimization problem, focusing on
maximization of end-user Quality-of-Experience (QoE) as well as service provider profit.

In order to initiate a radio communication service, soon after receiving the service requests from
RRHs, a BBU must perform a specific task for each request to commence the corresponding radio
access communication. The outcome of such tasks appear to the end users as the respective initial
responses to the service requests. In this phase of this work, we target this sort of computation at the
BBU pool. After the initialization of the service, radio communication will continue spontaneously.
Here, the transmission delay is considered as the time required to send the request and receive the
result, which depends on the connected network. Now, let the total time to get first response or the
amount of time from when a request is submitted until the first response is produced from a BBU,
b ∈ B to a RRH, h ∈ H after executing a request, r ∈ R can be defined as the summation of request
processing time and waiting time, as shown in Equation (3):

τr,b = ζr,b + vr, (3)

where ζr,b denotes the time required to process the corresponding submitted request and vr represents
the waiting time or the time count when a request arrives to the request queue until it goes for service.
The QoE and Profit-aware Resource Allocator always tries to allocate a specific BBU for a particular
request, which can reduce the total response time to enhance the user’s Quality-of-Experience (QoE).

Let the total profit achieved by the service provider for executing a request, r ∈ R, on a BBU,
b ∈ B, ρr,b be defined as follows,

ρr,b = (dr × pdr + wr × pwr )− (hb + ub), (4)

where hb and ub denote the monetary cost for renting BBU servers and other resource usage for
processing a request on the BBU. Let pdr represent price per request with data to be processed dr for
executing the corresponding resource request, r ∈ R, and pwr represents the additional unit price
for executing a request with priority wr, provided by the Pricing Policy Maker. Theses values can be
reactively determined based on the resource requirements as addressed in [19,20]. Thus, the total profit
gained by the service provider to allocate resource for requests can be calculated as in Equation (4).
This value always ensures higher profit for the request with higher priority, as additional charge is
required for executing a request with higher priority.

The objective of our proposed methodology is to allocate a BBU, b ∈ B for each selected request,
r ∈ R of an RRH, r ∈ R in such a way so that the total user QoE and the service provider’s
profit is maximized for executing all the selected service requests in a certain scheduling interval.
Let Or= {ρr,b, τr,b} be the set of objective parameters for executing a request r, which consists of service
provider’s profit and request response time. As these two values belong to different units, the profit
and response time are scaled within a range. Each element Oi ∈ Or can be normalized as Equation (5),
from which we get the normalized value of the service provider’s profit, ρ̂r,b and response time, τ̂r,b for
executing an incoming request on a BBU:

Ôi
r =

cur(Oi
r)−min(Oi)

max(Oi)−min(Oi)
(5)
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Here, cur(Oi
r) represents the current value and the max(Oi) and min(Oi) are the maximum and

minimum values of the corresponding objective parameters. Assuming that the execution process of
any request, r ∈ R is non-preemptive and all the virtual base stations (VBSs), v ∈ V, in a BBU will be
created on demand of the incoming request to the BBU Pool. Computational resources are allocated
for the incoming requests with the help of a certain number of scheduling intervals according to the
available BBUs and resource requirements. Let Γr,b denote the number of scheduling intervals required
for a request, r ∈ R, to be assigned to a BBU, b ∈ B. This value is incremented by one as the scheduling
interval number increases until a BBU is allocated for a request. The objective function of this resource
allocation problem is formulated as:

max
r,b

∑
r∈R

∑
b∈B

(α× ρ̂r,b − β× τ̂r,b −
γ

Γr,b
), (6)

which is subject to some constraints that are discussed elaborately in Equations (8)–(13). Equation (6)
reveals that the total QoE offered by the system to the end user for all the requests will be maximized
through minimization of the total time to get a response. It also ensures the earlier execution of
the requests that promise higher profit to the service provider. Furthermore, we also minimize the
starvation of any specific request by ensuring a higher chance of execution of requests with a higher
number of waiting slots. Here the greater the difference of these considered values, the greater the
maximization of Quality-of-Experience (QoE) and profit is achieved without having long starvation on
the request queue. Here, α, β, and γ are the system parameters which can be dynamically changed
according to the system environment satisfying Equation (7):

α + β + γ = 1 (7)

4.2.1. Constraints

The constraints of the aforementioned objective function can be listed as follows:

• BBU Constraint: The total number of BBUs in a pool must be constrained as

|B| ≤ Bmax, (8)

where |B| denotes the total number of BBUs in a pool and Bmax represents the threshold value of
the maximum number of BBUs that can be pooled.

• Capacity Constraint: The capacity constraint represents that the sum of the processing capacities
of the BBUs in a pool must be constrained by the total capacity of a BBU pool. This can be
represented as

∑
b∈B

ηb ≤ η, (9)

where ηb is the size of each BBU and η is the total capacity of a BBU pool.

• Request Assignment Constraint: It ensures that at a time, each request b r ∈ R of one RRH
h ∈ H is always assigned to one BBU b ∈ B of a BBU pool,

∑
r∈R

ξr,b ≤ 1, ∀r ∈ R, ∀b ∈ B, (10)

where ξr,b is a Boolean variable, equal to 1 if a request r ∈ R is assigned to a BBU b ∈ B of a pool;
otherwise, it is 0.
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• Virtual BBU Allocation Constraint: The BBU allocation constraint defines that at a given time,
one BBU will be allocated for one request, which is represented as

∑
b∈B

Ψr,b ≤ 1, ∀r ∈ R, ∀b ∈ B, (11)

where Ψr,b is a Boolean variable, equal to 1 if a BBU b ∈ B of a BBU pool is allocated for a
requested request r ∈ R; otherwise, it is 0.

• Profit Constraint: The profit constraint can be represented as

ρr,b ≥ ρmin, (12)

where ρr,b is the profit that is gained by the cloud service provider for executing a request, r ∈ R
on a BBU b ∈ B of a BBU pool and ρmin is the minimum profit that must be gained by the service
provider for executing that request.

• QoS Constraint: The QoS constraint can be represented as

τr,b ≤ qr, (13)

where τr,b is the total time to get any response after executing a request r ∈ R on a BBU b ∈ B of
a BBU pool, and qr is the required QoS of a request or the maximum allowable time to obtain
a result.

4.2.2. Computational Complexity of Resource Allocation Scheme

The Quality-of-Experience (QoE) and Profit-aware Resource Allocation or assignment of requests
to the BBUs as formulated in Equation (6) is a multi-objective non-linear programming (MONLP)
problem. Here the size of service request or data to be processed, dr, as well as the processing capacity
of BBU, ηb, vary from one to the other. Any BBU can be allocated to perform any request and processing
time, and profit gain may vary depending on the request-BBU assignment. It is required to process all
the selected requests by assigning exactly one request to each available BBU in such a way that the total
profit of the assignment is maximized and the time delay to get first response is minimized. There exists
a nonlinear relationship among the considered variables in Equation (6) and its constraints. Therefore,
the resource allocation problem can be identified as a combinatorial optimization problem [21] and
modeled as a generalized assignment problem (GAP) [22], which is a proved NP-Hard problem [23].
Thus, our optimal solution is proven to be an NP-Hard one.

4.3. Tradeoff between Customer Satisfaction and Service Provider Profit

Two first-fit greedy scheduling algorithms are invoked here for the system, when requests arrive
in a scheduling interval; and the cloud service provider wants to maximize one objective parameter
while maintaining the other one within a bounded value. In this work, the First Fit Satisfaction (FFS)
algorithm is used to expand customer satisfaction while keeping a bound of unit profit, while the First
Fit Profit (FFP) algorithm is proposed to escalate profit by affirming a target of customer satisfaction.

4.3.1. Satisfaction Optimization with a Profit Bound

This strategy is for service providers who aim to sustain a minimal unit profit ρmin for each
request. This value is predetermined by some market analysis by the service provider for each type of
requested task [19]. Algorithm 1 summarizes the steps of the First Fit Satisfaction algorithm for user
Quality-of-Experience (QoE) maximization. At first, the incoming requests are sorted in decreasing
order according to priority, wr, so that the request with the highest priority gets quicker access to the
BBU. The target of this algorithm is to elect that BBU for each request, r ∈ R, which offers the fastest
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processing of one particular request. The faster execution or processing of a request bestowed by the
BBU ensures a higher value of user satisfaction received by end user from a particular BBU. The BBU,
Υb, providing the highest value of satisfaction, κr, is picked out to be provisioned for one request,
r ∈ R. Therefore, the total time required to process a request, r ∈ R, on BBU, b ∈ B, is enumerated by
the ratio of total data to be processed of a request, dr, to the processing capacity of the BBU ηb as:

ζb,r =
dr

ηb
(14)

Algorithm 1 First Fit Satisfaction Algorithm for Maximizing User Satisfaction
INPUT: Processing Capacity of all BBUs, ηb, ∀b ∈ B, priority of each incoming request, wr, on a
scheduling interval and QoS of the incoming requests.

1: Sort the incoming requests in decreasing order according to the value of wr
2: for each incoming request r ∈ R in the sorted array do
3: κr = 0 and Υb = 0
4: for each available BBU b ∈ B in the BBU pool do
5: Calculate ζb,r using Equation (14)
6: Calculate satisfaction of running a request on BBU b
7: κb,r = qr − (ζb,r + vr)
8: if κr ≤ κb,r then
9: κr = κb,r

10: Υb = b
11: end if
12: end for
13: Select BBU Υb for processing the request r ∈ R
14: end for

In this FFS algorithm, the BBU is selected focusing on maximizing the value of user satisfaction
or user Quality-of-Experience (QoE). It searches for that BBU which can process earlier than the QoS
requirement of a particular request. The BBU which provides the maximum distance from the value of
QoS of a request, qr to the value of processing time, ζr

b, is selected for a request. A higher value of this
distance assures higher satisfaction.

4.3.2. Profit Optimization Under a Satisfaction Target

This strategy is for service providers who aim to maximize profit while maintaining a minimal
satisfaction level that is the QoS of the request, qr. Among all incoming requests from the RRHS to a
BBU pool, that request will be scheduled or executed on the BBU b ∈ B that ensures the maximum profit
by using the computational resources available to the service provider by maintaining a minimum
user satisfaction level.

In Algorithm 2, the incoming requests are sorted according to their priorities. After that, each
request is assigned to the BBU, focusing on minimizing the cost and maximizing the profit. For that,
to reduce the BBU rental cost in the current scheduling interval, this algorithm calculates the remaining
time of a BBU to become free after processing the request which was scheduled on the most recent
scheduling interval. So, the total time to get a response from a BBU b ∈ B after executing a currently
scheduled request, r ∈ R, on that BBU is enumerated as the time required by BBU to become free plus
the execution time to execute that request. The time required a BBU to become free after finishing the
execution of a running request is calculated as:

tb
f = ta

r−1 + ζ(r−1),b − tc, (15)
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where ta
r−1 denotes the time when the currently running request arrives, ζ(r−1),b is the required time to

process the request, and tc represents the current time. If a BBU, b ∈ B, currently does not process any
request, then the value of tb

f is considered to be 0. As a consequence, the total time to get a response
from a BBU is represented as:

ˆζr,b = tb
f +

dr

ηb
(16)

where dr is the request data to be processed, and ηb is the processing capacity of the BBU b ∈ B. If the
value of ˆζb,r is less than or equal to the corresponding requests QoS requirement, qosr, then the request
r ∈ R is assigned to BBU b ∈ B rather than renting another BBU. As a result, the BBU renting cost
of BBU for this request r ∈ R, µr,b becomes 0. After that, using Equation (4), the profit gain from a
particular request for executing on a BBU b ∈ B is calculated. Therefore, the request providing highest
profit to be executed on BBU b ∈ B is selected to be provisioned.

Algorithm 2 First Fit Profit Algorithm for Maximizing Service Provider Profit
INPUT: Weighted priority of each incoming request, wr ∈ B, processing capacity of all BBUs,
ηb, ∀b ∈ B.

1: Sort the incoming requests in decreasing order according to the value of wr
2: for each request r ∈ R in the sorted array of requests do
3: ρr = 0 and Υb = 0
4: for each BBU b ∈ B in the sorted array do
5: hb is the corresponding rental cost of the BBU, b
6: Calculate tb

f and ˆζr,b using Equation (15) and Equation (16), respectively
7: if ˆζr,b ≤ qr then
8: ζr = ˆζr,b and hb = 0
9: else

10: ζr =
dr
ηb

11: end if
12: Calculate the profit ρr,b using Equation (4)
13: if ρr,b ≥ ρr then
14: ρr = ρr,b
15: Υb = b
16: end if
17: end for
18: Select request r ∈ R to be executed on the BBU, Υb
19: end for

The complexities of the proposed algorithms are quite straightforward. Firstly, in order to sort
the set of incoming resource requests R in descending order in line 2 of both Algorithms 1 and 2, we
use a merge sort algorithm which has the worst-case complexity of O(|R| log |R|). The statements
in lines 5–12 in Algorithm 1 and lines 5–14 in Algorithm 2 are enclosed in a loop that iterates |B|
times. The rest of the statements have constant unit time complexities. Therefore, the worst-case
computational complexity of the algorithms is O(|R|B).

5. Performance Evaluation

In this section, the efficacy of our proposed scheme is validated through simulation.
The performance of the proposed QEPRA and First Fit Satisfaction (FFS) and First Fit Profit (FFP)
algorithms are compared with some of the existing schemes in the literature. Here, the proposed
system is assimilated with the NvG (news vendor game-based resource allocation) scheme [9] and
QoSM (Quality-of-Service-aware dynamic BBU-RRH mapping) methodology [6].
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5.1. Simulation Environment

The simulation environment of the Quality-of-Experience (QoE) and Profit-aware Resource
Allocation framework in CRAN was designed using the CloudSimSDN [11] simulation toolkit. The
simulated CRAN environment consists of one BBU pool with five BBUs. The computation speeds of
the BBUs vary from 20 to 50 MHz. Through the simulation environment, it has also been imaged that
10 RRHs are geographically distributed to interact with end users directly and that they are supported
by the BBUs of the BBU pool. The arrival pattern of the computational resource requests from the
RRHs to the virtualized BBU pool is Poisson distributed, and the size of each request ranges from 20 to
600 KB. Heterogeneous attributes (dr, qr and nr) associated with each request may have random values.
Here, a random waypoint mobility model [24] is envisaged in which users with mobile wireless devices
move independently to a randomly chosen destination with a random speed. The received signal
strength or the RSSI values of the user devices vary due to their mobility pattern. The simulation is
run for 500 s. Each data point in the graph corresponds to the mathematical average of the results from
50 simulation runs. In order to emulate a real CRAN system environment and for a fair comparison,
application types, attributes, and system parameters are carefully selected for a realistic simulation
scenario [25–27]. Table 3 shows the system parametric values used in our simulation.

Table 3. Simulation parameters.

Parameter Value

Number of BBU 5
BBU processing speed 20∼50 MHz

Number of RRH 10
Incoming data per request to be processed 20∼600 KB

Maximum allowable delay (QoS) 20∼200 ms
RSSI value −15∼−75 dB

Simulation Duration 500 s

5.2. Performance Matrices

The following performance matrices are evaluated for comparing our proposed QEPRA, FFS, and
FFP algorithms along with two existing scheduling approaches (NvG, QoSM) in the literature.

5.2.1. Quality-of-Experience

Quality-of-Experience (QoE) is a measure of the overall level of user satisfaction, which can be
increased by enhancing the gap between maximum allowable time to get a response (i.e., QoS) and the
response time for a request [18]. We measured the average QoE for all requests, R, arriving during the
simulation period as follows:

κ =
1
|R| ∑

r∈R

qr − (vr + ζr,b)

qr
, (17)

where vr is the waiting time in the queue and ζr,b represents the required time to process a request,
r, on a BBU, b. The greater the value of κ, the better is the capability of the system to maximize
user QoE.

5.2.2. Percentage of Requests Satisfying QoS

The percentage of requests satisfying QoS is calculated as the ratio of the successfully completed
services to the total number of arrived requests. A higher value indicates that a higher number of
service requests have been processed by the system satisfying the QoS requirements, hence higher
user satisfaction.

ˆqosr =
Re

Ra × 100%, (18)

where Re denotes the number of QoS satisfied requests and Ra is the total number of requests.
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5.2.3. Average Waiting Time

The waiting time of a request is the time count from its arrival to the request queue until it is
assigned to a BBU in the BBU pool. The smaller the average waiting time of the incoming requests,
the more quickly users will get a response from the system, which indicates greater user satisfaction.
Let va

r and vl
r denote the arrival time to the queue and leaving time from the queue of a request,

respectively. The average waiting time of each request is defined as:

vr =
1
|R| ∑

r∈R
(va

r −vl
r) , (19)

where R is the set of all requests arrived during the whole simulation period. A lower vr value
corresponds to better system performance.

5.2.4. Service Provider Profit

The profit gained by the service provider is calculated by the difference between the revenue
gained and cost required to execute a request as in Equation (4), and then the average is taken for all
requests arrived during the simulation period.

The average profit gained by the service provider for each request can be calculated as:

ρr,b =
1
|R| ∑

r∈R
(ρr,b), (20)

where ρr,b represents the profit of processing a request gained by the service provider, and R is the
total number of assigned requests. The higher the value of ρr,b, the higher the profit obtained by the
service provider for each request.

5.3. Results and Discussion

Assessment results attained by implementing the aforementioned simulation framework are
described in this subsection. Here, the results and discussion are presented according to the impact of
varying the number of requests, as well as the QoS requirements of requests.

The percentage of successfully executed service requests in terms of maintaining QoS level
is enumerated here for varying number of arrived requests, and is delineated in Figure 4a.
However, the graphs of Figure 4a illustrate that the percentage of successfully executed requests
satisfying QoS level sharply declines in all of the studied resource allocation strategies with increasing
arrived requests. The growing number of requests augments the waiting time for the requests,
which imposes many of the service requests to overstep the maximum allowable delay.
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Figure 4. Impacts of varying number of arrived requests. (a) Percentage of requests satisfying QoS;
(b) Average waiting time; (c) Quality-of-Experience of users; (d) Service provider profit. FFP: First Fit
Profit; FFS: First Fit Satisfaction.

However, the rate of decrease is significantly less in the FFS algorithm, as this is especially
designed for maximization of user Quality-of-Experience (QoE). In FFS, one BBU which can execute a
request with the fastest processing time is allocated for a request. On the other hand, FFP targets on
maximization of profit while maintaining the minimum QoS level. As in QEPRA, a multi-objective
optimization problem is formulated, the proposed FFS algorithm outperforms QEPRA and FFP. Yet,
the QEPRA provides a better result compared to the NvG and QoSM protocols because the proposed
QEPRA technique prioritizes the scheduling of requests following their QoS constraints. The rationality
for better performance of QEPRA compared to the other two reviewed schemes from the literature can
be described by a scenario as, suppose that in the system three requests are being executed using the
total system resources. Then, two other requests come one after another. The first request contains
flexible QoS requirements, while the second is stringent in terms of QoS. As there is no priority based
on the QoS requirements in the NvG approach, generally at first the system will adjust the total system
resources for the first application request. After adjusting the request, it may find that the later request
cannot be sent for execution since the required adjustment to allocate resources for that request cannot
be made in the present system condition. In this circumstance, the QoS of the later service request will
be violated. As the number of requests increases in the system, the rate of this type of QoS violation will
increase. In this case, our proposed execution scheduler works significantly well, since it prioritizes
the newly arrived requests based on their QoS requirements. Moreover, as the number of requests
increases in the system, the genetic solution in QoSM consumes much more time than the proposed
QEPRA and affects the QoS requirement of the service request. In addition, QEPRA makes a tradeoff
between profit and QoE and FFP maintains minimum QoS level. On the other hand, FFS is particularly
designed for QoE maximization and thus FFS provides the best result here.

5.3.1. Impacts of a Varying Number of Incoming Requests

The impacts of varying the number of incoming requests of the incoming service requests on the
performance of our proposed algorithms are manifested in Figure 4.

The graphs of Figure 4b illustrate that for all the approaches, the average waiting time of the
requests will increase as the number of service requests increases. However, for the genetic-based
approach (QoSM), it is quite high since the algorithm itself contributes to the waiting time of the
requests. On the other hand, to adjust the resources for incoming requests in the news vendor game
theory-based approach (NvG), some additional waiting time is observed by each request. Although
our proposed approaches schedule the request in priority basis, it also ensures higher probability of the
deferred requests to be scheduled in the subsequent scheduling intervals. Due to this consideration,
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average waiting of the requests in this approach is less compared to the existing works. Moreover, as
in our proposed FFP algorithm, minimum QoS requirement is maintained, and waiting time is also
reduced. As the FFS algorithm focuses on maximizing the time gap between the maximum allowable
delay to get a response and summation of waiting time and processing time, among our proposed
QEPRA, FFS, and FFP algorithms, FFS provides the best result in terms of reducing the average waiting
time, as shown in Figure 4b.

The performance results of the proposed system in terms of Quality-of-Experience (QoE) are
depicted in the graphs of Figure 4c. Our approaches execute the requests according to the priority of the
requests which is based on their requirements. As a result, most of the requests get their results much
before their deadline, which is eventually reflected in their QoE. As the FFS algorithm is especially
designed for QoE maximization, it outperforms the other proposed algorithms as well as the existing
works, as illustrated in Figure 4c.

A comparative study of the service provider profit for a varying number of arrived requests
is provided in Figure 4d. In our approaches, on a scheduling interval, when an arrived request
with higher scheduling priority executes in the system, the corresponding price of the service is also
maximized. Our proposed FFP algorithm targets the maximization of service provider profit by
reducing the resource rental cost. The per-unit profit gain also remains increasing as the number of
incoming requests increases. QEPRA makes a tradeoff between profit and QoE; on the other hand,
in the FFS algorithm, minimum per-unit profit is maintained and so this algorithm provides a better
result than the others, except FFP. On the other hand, in the news vendor game-based approach, the
scope of maximizing profit will be in its bargaining phase when the total service request is larger than
the system capacity. As a result, the profit gain remains static for a certain number of requests in NvG.
As QoSM does not address the service provider profit, the average per-unit profit gain always remains
constant for the execution of an increasing number of requests.

5.3.2. Impacts of Varying Average QoS Requirement per Request

The impacts of average QoS requirement of the incoming service requests on the performance
of our proposed algorithms are manifested in Figure 5. As the average QoS requirements of the
incoming requests increases, the maximum allowable delay to get the first response time becomes
flexible. Hence, the QoS satisfaction percentage is increased in all approaches, as depicted in Figure 5a.
However, as the FFS algorithm is specially designed for QoE maximization, it implicitly provides the
best result among the studied approaches.
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Figure 5. Impacts of varying average QoS requirements of requests. (a) Percentage of requests satisfying
QoS; (b) Quality-of-Experience of users; (c) Service provider profit.

Moreover, as it relaxes the time boundary of performing baseband processing, there is a large
possibility to execute within a minimal time regarding its QoS requirement. As a result, the QoE also
keeps rising in all graphs in Figure 5b for our proposed algorithms as well as to the studied works.
In addition, as the increase of average timeline QoS requirement offers a higher number of requests
processing successfully, the service provider’s profit gain also increases, as in Figure 5c.

Our in-depth look into the simulation trace file reveals that the considered simulation matrices
give better performance value for our proposed system compared to the other two reviewed schemes.
However, as the BBU pool has limited computational resources, the performance of the QEPRA as
well as FFS and FFP decline with the increasing number of requests, which opens a new window for
further developments.

6. Conclusions

In this work, a multi-objective non linear programming solution to the Quality-of-Experience
(QoE) and Profit-aware Resource Allocation problem has been developed which makes a trade off
between user QoE and service provider profit. The incoming requests have been prioritized based on
their required data rates, QoS, and connectivity. Then, an optimal resource scheduling is developed.
The dynamic determination of scheduling interval has helped to increase the performance significantly.
The greedy FFP and FFS algorithms are proven to be computationally viable and has offered results
near to optimal solution. The simulation results depict the effectiveness of our proposed system
in terms of QoE, QoS, and profit margin. In the future, we would like to extend our simulation
environment with an extensive performance analysis in contrast to the state-of-the-art works.
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